Bài viết lách Cách tính khoảng cách thân thuộc đường thẳng liền mạch và mặt mũi bằng phẳng tuy nhiên song với cách thức giải cụ thể hùn học viên ôn luyện, biết phương pháp thực hiện bài xích luyện Cách tính khoảng cách thân thuộc đường thẳng liền mạch và mặt mũi bằng phẳng tuy nhiên tuy nhiên.
Bạn đang xem: cách tính khoảng cách từ đường thẳng đến mặt phẳng
Cách tính khoảng cách thân thuộc đường thẳng liền mạch và mặt mũi bằng phẳng tuy nhiên song vô cùng hay
A. Phương pháp giải
Quảng cáo
Cho đường thẳng liền mạch d // (P); nhằm tính khoảng cách thân thuộc d và (P) tớ tiến hành những bước:
+ Cách 1: Chọn một điểm A bên trên d, sao mang lại khoảng cách kể từ A cho tới (P) rất có thể được xác lập dễ dàng nhất.
+ Cách 2: Kết luận: d(d; (P)) = d(A; (P)).
B. Ví dụ minh họa
Ví dụ 1: Cho hình chóp S. ABCD với SA ⊥ (ABCD), lòng ABCD là hình thang vuông bên trên A và B; AB = a. Gọi I và J theo thứ tự là trung điểm của AB và CD. Tính khoảng cách thân thuộc đường thẳng liền mạch IJ và (SAD)
Hướng dẫn giải
Chọn C
Ta có: I và J theo thứ tự là trung điểm của AB và CD nên IJ là lối trung bình của hình thang ABCD
Ví dụ 2: Cho hình thang vuông ABCD vuông ở A và D; AD = 2a. Trên đường thẳng liền mạch vuông góc bên trên D với (ABCD) lấy điểm S với SD = a√2. Tính khỏang cơ hội thân thuộc đường thẳng liền mạch CD và (SAB).
Hướng dẫn giải
Chọn A
Vì DC // AB nên DC // (SAB)
⇒ d(DC; (SAB)) = d(D; (SAB))
Kẻ DH ⊥ SA
Do AB ⊥ AD và AB ⊥ SA nên AB ⊥ (SAD)
⇒ DH ⊥ AB lại sở hữu DH ⊥ SA
⇒ DH ⊥ (SAB)
Nên d(CD; (SAB)) = DH.
Trong tam giác vuông SAD tớ có:
Quảng cáo
Ví dụ 3: Cho hình chóp O.ABC với lối cao OH = 2a/√3 . Gọi M và N theo thứ tự là trung điểm của OA và OB. Khoảng cơ hội thân thuộc đường thẳng liền mạch MN và (ABC) bằng:
Hướng dẫn giải
Chọn D
Vì M và N theo thứ tự là trung điểm của OA và OB nên
MN // AB
⇒ MN // (ABC)
Khi tê liệt, tớ có:
(vì M là trung điểm của OA).
Ví dụ 4: Cho hình chóp tứ giác đều S.ABCD với AB = SA = 2a . Khoảng cơ hội kể từ đường thẳng liền mạch AB cho tới (SCD) bởi vì bao nhiêu?
Hướng dẫn giải
Gọi O là phó điểm của AC và BD; gọi I và M theo thứ tự là trung điểm cạnh AB và CD. Khi đó; IM // AD //BC
Do S.ABCD là hình chóp tứ giác đều phải sở hữu O là tâm của hình vuông nên SO ⊥ (ABCD) .
+ Do tam giác SAB là đều cạnh 2a
Chọn đáp án D
C. Bài luyện vận dụng
Câu 1: Cho hình chóp S.ABCD với lòng ABCD là hình vuông vắn tâm O, cạnh a. sành nhì mặt mũi mặt (SAB) và (SAD) nằm trong vuông góc với mặt mũi bằng phẳng lòng và SA = a√2. Gọi E là trung điểm AD. Khoảng cơ hội thân thuộc AB và (SOE) là
Lời giải:
+ Vì nhì mặt mũi mặt (SAB) và (SAD) nằm trong vuông góc với mặt mũi bằng phẳng lòng .
mà (SAB) ∩ (SAD) = SA
⇒ SA ⊥ (ABCD) .
+ Do E là trung điểm của AD Lúc tê liệt
Tam giác ABD với EO là lối tầm
⇒ EO // AB ⇒ AB // (SOE)
⇒ d(AB, (SOE)) = d(A; (SOE)) = AH
với H là hình chiếu của A lên SE.
Quảng cáo
Câu 2: Cho hình lập phương ABCD.A'B'C'D' với cạnh bởi vì 1 (đvdt). Khoảng cơ hội thân thuộc AA’ và (BB’D’) bằng:
Lời giải:
Chọn B
Ta có: AA’ // BB’ tuy nhiên BB’ ⊂ ( BDD’B’)
⇒ AA’ // (BDD’B’)
⇒ d( AA’; (BD’B’)) = d(A; (BDD’B’)
Gọi O là phó điểm của AC và BD
⇒ AO ⊥ (BDD’B’) (tính hóa học hình lập phương)
Câu 3: Cho hình chóp S.ABCD với SA ⊥ (ABCD) lòng ABCD là hình chữ nhật với AC = a√5 và BC = a√2. Tính khoảng cách thân thuộc (SDA) và BC?
Lời giải:
+ Ta có: BC // AD nên BC // (SAD)
⇒ d(BC; (SAD)) = d(B; SAD))
+ Ta chứng tỏ BA ⊥ (SAD) :
Do BA ⊥ AD (vì ABCD là hình chữ nhật)
Và BA ⊥ SA (vì SA ⊥ (ABCD))
⇒ BA ⊥ (SAD)
⇒ d(B; (SAD)) = BA
Áp dụng ấn định lí Pytago nhập tam giác vuông ABC có:
AB2 = AC2 - BC2 = 5a2 - 2a2 = 3a2
⇒ AB = √3 a
⇒ d(CB; (SAD)) = AB = √3 a
Đáp án D
Câu 4: Cho hình chóp S.ABCD với lòng ABCD là hình chữ nhật và AB = 2a; BC = a . Các cạnh mặt mũi của hình chóp cân nhau và bởi vì a√2 . Gọi E và F theo thứ tự là trung điểm của AB và CD; K là vấn đề ngẫu nhiên bên trên BC. Khoảng cơ hội thân thuộc hai tuyến đường trực tiếp EF và (SBK) là:
Xem thêm: hình nón hình nón cụt diện tích xung quanh và thể tích của hình nón hình nón cụt
Lời giải:
Gọi O là phó điểm của AC và BD; I là trung điểm cạnh BC
+ Do SA = SB = SC = SD và OA = OB = OC = OD nên SO ⊥ (ABCD)
+ Ta chứng tỏ BC ⊥ (SOI)
- Tam giác SBC cân nặng bên trên S với SI là lối trung tuyến nên bên cạnh đó là lối cao: BC ⊥ SI (1).
- Lại có: BC ⊥ SO (vì SO ⊥ (ABCD)) (2)
Từ ( 1) và ( 2) suy ra: BC ⊥ (SOI)
Mà OH ⊂ (SOI) nên BC ⊥ OH
⇒ OH ⊥ (SBC)
Do EF // BK nên EF // (SBK)
⇒ d(EF; (SBK)) = d(O; (SBK)) = OH
Chọn đáp án D.
Câu 5: Cho hình chóp S.ABC với lòng ABC là tam giác vuông bên trên B; AB= a cạnh mặt mũi SA vuông góc với lòng và SA = a√2. Gọi M và N theo thứ tự là trung điểm của AB; AC. Khoảng cơ hội thân thuộc BC và (SMN) bởi vì bao nhiêu?
Lời giải:
+ Tam giác ABC với MN là lối tầm nên MN // BC
⇒ BC // (SMN) nên :
d(BC; (SMN)) = d(B; (SMN)) = d(A; (SMN))
Gọi H là hình chiếu vuông góc của A bên trên đoạn SM.
+ Ta triệu chứng minh: MN ⊥ (SAM):
Chọn đáp án A
Quảng cáo
Câu 6: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh mặt mũi SA = SB = SC = SD = a√2. Khoảng cách giữa nhì đường thẳng AD và (SBC) là:
Lời giải:
+ Do AD // BC nên AD // (SBC)
⇒ d (AD, (SBC)) = d(H; (SBC))
trong tê liệt H là trung điểm AD.
+ Gọi M là trung điểm của BC và K là hình chiếu vuông góc của H lên SM
⇒ d(H; (SBC)) = HK.
+ Diện tích tam giác SMH là:
Chọn đáp án C
Câu 7: Cho hình chóp S.ABCD với lòng là hình vuông vắn cạnh a, SD = a√17/2 . Hình chiếu vuông góc H của đỉnh S lên phía trên mặt bằng phẳng (ABCD) là trung điểm của cạnh AB. Gọi K là trung điểm của AD. Tính khoảng cách thân thuộc hai tuyến đường HK và (SBD) theo đòi a
Lời giải:
+ Ta có: H và K theo thứ tự là trung điểm của AB và AD nên HK là lối tầm của tam giác ABD
⇒ HK // BD ⇒ HK // (SBD)
⇒ d(HK; (SBD)) = d(H, (SBD))
Kẻ HI ⊥ BD và HJ ⊥ SI
Chọn đáp án C
Câu 8: Cho hình chóp S.ABCD với lòng ABCD là hình thoi cạnh a và ∠ABC = 60° Hai mặt mũi bằng phẳng (SAC) và (SBD) nằm trong vuông góc với lòng, góc thân thuộc nhì mặt mũi bằng phẳng (SAB) và (ABCD) bởi vì 30°. Khoảng cơ hội thân thuộc hai tuyến đường trực tiếp CD và (SAB) theo đòi a bằng:
Lời giải:
Gọi O là phó điểm của AC và BD
Kẻ: OI ⊥ AB; OH ⊥ SI
+ Do CD // AB nên CD // (SAB)
⇒ d(CD, (SAB)) = d(C; (SAB)) = 2d( O; (SAB))
Ta có: AB ⊥ SO , AB ⊥ OI ⇒ AB ⊥ (SOI) ⇒ AB ⊥ OH
Nên OH ⊥ (SAB) ⇒ d(O, (SAB)) = OH
Mà tam giác Ngân Hàng Á Châu ACB cân nặng bên trên B với ∠ABC = 60° nên tam giác ABC đều
⇒ OC = (1/2)AC = (1/2)AB = a/2 .
+ xét tam giác OAB có:
Chọn đáp án B
Câu 9: Cho hình chóp tứ giác đều S.ABCD với lối cao SO = 2, mặt mũi mặt phù hợp với mặt mũi lòng một góc 60°. Khi tê liệt khoảng cách thân thuộc hai tuyến đường trực tiếp AB và (SCD) bằng
Lời giải:
+ Gọi I là trung điểm của CD . Ta có:
⇒ ((SCD), (ABCD)) = (OI, SI) = 60°
+ Ta có: AB // CD nên AB // (SCD)
⇒ d(AB, (SCD)) = d(A, ( SCD)) = 2.d(O, (SCD))
+ Trong mp (SOI) , gọi H là hình chiếu vuông góc của O lên SI
+ Tam giác SOI vuông bên trên O, với lối cao OH nên
Do đó: d(AB; (SCD)) = 2d(O; (SCD)) = 2.OH = 2.1 = 2
Chọn B
Săn SALE shopee mon 7:
- Đồ sử dụng tiếp thu kiến thức giá cả tương đối mềm
- Sữa chăm sóc thể Vaseline chỉ rộng lớn 40k/chai
- Tsubaki 199k/3 chai
- L'Oreal mua 1 tặng 3
ĐỀ THI, GIÁO ÁN, GIA SƯ DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11
Bộ giáo án, bài xích giảng powerpoint, đề ganh đua dành riêng cho nghề giáo và gia sư dành riêng cho bố mẹ bên trên https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài tương hỗ ĐK : 084 283 45 85
Đã với ứng dụng VietJack bên trên điện thoại cảm ứng, giải bài xích luyện SGK, SBT Soạn văn, Văn kiểu mẫu, Thi online, Bài giảng....miễn phí. Tải tức thì phần mềm bên trên Android và iOS.
Nhóm tiếp thu kiến thức facebook không tính phí mang lại teen 2k5: fb.com/groups/hoctap2k5/
Theo dõi công ty chúng tôi không tính phí bên trên social facebook và youtube:
Nếu thấy hoặc, hãy khích lệ và share nhé! Các phản hồi ko phù phù hợp với nội quy phản hồi trang web sẽ ảnh hưởng cấm phản hồi vĩnh viễn.
Bình luận